NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Productive Hearing in a Bat Cocktail Party: Adaptable Echolocation as well as Airfare Habits of massive Brownish Bats, Eptesicus fuscus, Looking within a Cluttered Traditional Atmosphere.
The development of efficient and sustainable sorbents for emergent oil cleanup has attracted tremendous attention. In this study, the feasibility of enzymatic grafting of octadecylamine (ODA) on corn stalk pith (CSP) by laccase-TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) treatment for enhanced oil-water separation was investigated. The dynamic contact angle tests suggest that the modified CSP (LCSP) had higher hydrophobicity (WCA, 157.2˚) and lipophilicity (OCA, 0˚) than the CSP did. In addition, the introduction of ODA onto the surface of modified CSP was verified by a variety of characterization techniques including SEM, FT-IR, and XPS. Compared with the control, laccase-TEMPO treatment of CSP coupled with octadecylamine grafting greatly improved the oil sorption capacity from 13.24 g/g to 44.25 g/g, while substantially reduced the water sorption capacity from 15.52 g/g to 2.76 g/g. LCSP has fast kinetic (sorption equilibrium reached before 60 min) and high fits to the pseudo-second-order kinetic model. The results obtained in this study reveal the feasibility of using Laccase-TEMPO treatment to graft the ODA onto the surface of CSP, thereby enhancing the rate and capacity of oil separation from oily water. The method and sorbent developed in this study hold promise for green, simple and cost-effective oil cleanup during oil spillage emergency events.Nutrient-rich biogas slurry shows favorable prospects for application as an organic fertilizer in farmland. At the same time, due to differing sources and treatment methods, the C/N ratio of biogas slurry varies greatly. The effect of differences in C/N of biogas slurry on soil organic matter properties remains unclear. In this experiment, pig farm biogas slurry differing in C/N (3, 6, 8.84 and 12) was applied instead of fertilizer. Fluorescence spectroscopy combined with parallel factor analysis and principal component analysis were used to determine dissolved organic carbon (DOC) and fluorescent dissolved organic matter (FDOM) in soil dissolved organic matter (DOM). The experimental results showed that the DOC and FDOM contents of soil could be significantly increased at the initial stage of biogas slurry application. Compared with CK, on the 60th day, biogas slurry with a C/N of 12 exhibited the greatest improvement in DOC, FDOM as well as for Component 1, Component 2 and Component 3 contents in soil FDOM, 40.93%, 66.25%, 65.35%, 40.47%, and 78.42% respectively. However, compared with the 0th day, by the 60th day, biogas slurry with a C/N of 8.84 exhibited the greatest decrease in Component 4 content in soil FDOM, 74.68%. Biogas slurry with a C/N of 8.84 exerted the greatest promotion effect on corn growth, the utilization and transformation of Component 4 by plants and microorganisms in the soil. And it showed the strongest improvement in the degree of FDOM humification in the soil, the humification index increased from 4.16 ± 0.17 to 4.92 ± 0.58, compared with CK. This study provided new insights for the utilization of biogas slurry with respect to soil physical and chemical properties and maize plant growth.Di-(2-ethylhexyl) phthalate (DEHP), one of the most commonly used endocrine-disrupting chemicals, has been shown to cause reproductive dysfunction in humans and animal models. However, very few studies have investigated the impact of DEHP at the post-transcriptional level in mouse testes, and the underlying mechanisms remain unclear. In the present research, TM3 Leydig cells were treated with 200 µM phthalic acid mono-2-ethylhexyl ester (MEHP, bio-metabolite of DEHP), and then the mRNA and lncRNA sequencing of TM3 Leydig cells was performed. Mice were exposed prepubertally to 0 or 500 mg DEHP/kg/day. RNA sequencing of mouse testes was performed to verify the RNA-seq results in vitro. The expression patterns of relevant genes and proteins were verified using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. DEHP and MEHP exposure led to testicular damage and accelerated cell aging via ROS accumulation. RNA sequencing analyses indicated that FOXO signaling and longevity regulation pathways were activated in resistance to ROS accumulation. FOXO signaling and longevity regulation pathway-related genes and proteins were also activated. By constructing a competing endogenous RNA (ceRNA) network, we observed that the ceRNA network might play a role in regulating FOXO signaling and longevity regulation pathways in response to excessive ROS accumulation and cell aging. In summary, our data here suggests that the ceRNA network may play a role in regulating FOXO signaling and longevity pathways in response to DEHP exposure in mouse testes.As a non-essential heavy metal, cadmium (Cd) is toxic to plants. In the last 15 years, over 70 transcriptome studies have been published to decipher the molecular response mechanism against Cd stress in different plants. To extract generalization results from transcriptomic data across different plants and obtain some hub genes that respond to Cd stress, we carried out a meta-analysis of 32 published datasets. Cluster analysis revealed that plant species played a more decisive role than the media used and exposure time in the transcriptome patterns of plant roots response to Cd. The datasets from a Gramineae-like (GL) group were closer in clustering. 838 DEGs were commonly Cd-regulated in at least nine of 18 GL datasets. Gene ontology and KEGG pathway analyses revealed that oxidative stress-related terms and lignin synthesis-related terms were significantly enriched. Mapman analysis revealed that these common DEGs were mainly involved in regulation, cellular response, secondary metabolism, transport, cell wall and lipid metabolism. In Oryza sativa, 15 DEGs were up-regulated in at least four of five HM (As, Cr, Cd, Hg and Pb) groups, such as Os10g0517500 (methionine gamma-lyase) and Os01g0159800 (bHLH107). Moreover, our datasets can be used to retrieve log2FC value of specific genes across 29 studies (48 datasets), which provides data reference for the subsequent selection of HM-related genes. Our results provide the basis for further understanding of Cd tolerance mechanisms in plants.Phytophthora capsici causes a severe soil-borne disease in a wide variety of vegetables; to date, no effective strategies to control P. capsici have been developed. Liquiritin (LQ) is a natural flavonoid found in licorice (Glycyrrhiza spp.) root, and it is used in pharmaceuticals. However, the antifungal activity of LQ against P. capsici remains unknown. In the present study, we demonstrated that LQ inhibits P. capsici mycelial growth and sporangial development. In addition, the EC50 of LQ was 658.4 mg/L and LQ caused P. capsici sporangia to shrink and collapse. Next, LQ severely damaged the cell membrane integrity, leading to a 2.0-2.5-fold increase in relative electrical conductivity and malondialdehyde concentration, and a 65-70% decrease in sugar content. Additionally, the H2O2 content was increased about 2.0-2.5 fold, but the total antioxidant activity, catalase activity and laccase activity were attenuated by 40-45%, 30-35% and 70-75%. LQ also induced autophagy, apoptosis, and reduction of intracellular Ca2+ content. Furthermore, LQ inhibited P. capsici pathogenicity by reducing the expression of virulence genes PcCRN4 and Pc76RTF, and stimulating the plant defense (including the activated transcriptional expression of defense-related genes CaPR1, CaDEF1, and CaSAR82, and the increased antioxidant enzyme activity). Our results not only elucidate the antifungal mechanism of LQ but also suggest a promising alternative to commercial fungicides or a key compound in the development of new fungicides for the control of the Phytophthora disease.A recently isolated osmo-tolerant yeast Candida tropicalis A1, which could decolorize various azo dyes under high-salinity conditions, was systematically characterized in the present study. Stimulating dye-decolorization effectiveness and osmo-tolerance of the yeast by static magnetic field (SMF) was investigated and transcriptomic responses of the yeast to SMF was analyzed to propose possible mechanisms. The results demonstrated that the yeast A1 effectively decolorized (≥ 97.50% within 12 h) and detoxified (from high toxicity to low toxicity within 24 h) 70 mg/L Acid Red B (ARB) under the optimized conditions through a series of steps including naphthalene-amidine bond cleavage, reductive or oxidative deamination/desulfurization, open-loop of hydroxy-substituted naphthalene or benzene and TCA cycle. Moreover, dye decolorization performance and osmo-tolerance of the yeast A1 were further improved by 24.6 mT SMF. Genes encoding high-affinity hexose/glucose transporter proteins and NADH-ubiquinone oxidoreductase were up-regulated by 24.6 mT SMF, which might be responsible for the increase of dye decolorization. Significant up-regulation of glycerol-3-phosphate dehydrogenase and cell wall protein RHD3 suggested that osmo-tolerance was enhanced by 24.6 mT SMF through promoting production and intracellular accumulation of glycerol as compatible solute, as well as regulation of cell wall component. In conclusion, 24.6 mT SMF led to the up-regulation of related genes resulting in enhanced dye biodegradation efficiency and osmo-tolerance of the yeast A1.Ultrafast 2D-IR spectroscopy is a powerful tool for understanding the spectroscopy and dynamics of biological molecules in the solution phase. A number of recent studies have begun to explore the utility of the information-rich 2D-IR spectra for analytical applications. Here, we report the application of ultrafast 2D-IR spectroscopy for the detection and classification of bacterial spores. 2D-IR spectra of Bacillus atrophaeus and Bacillus thuringiensis spores as dry films on CaF2 windows were obtained. The sporulated nature of the bacteria was confirmed using 2D-IR diagonal and off-diagonal peaks arising from the calcium dipicolinate CaDP·3H2O biomarker for sporulation. Distinctive peaks, in the protein amide I region of the spectrum were used to differentiate the two types of spore. The identified marker modes demonstrate the potential for the use of 2D-IR methods as a direct means of spore classification. We discuss these new results in perspective with the current state of analytical 2D-IR measurements, showing that the potential exists to apply 2D-IR spectroscopy to detect the spores on surfaces and in suspensions as well as in dry films. The results demonstrate how applying 2D-IR screening methodologies to spores would enable the creation of a library of spectra for classification purposes.Spectroscopic analysis, density functional theory (DFT) studies and surface enhanced Raman scattering (SERS) of antimycobactetial 4-[3-(4-acetylphenyl)ureido]-2-hydroxybenzoic acid (AUHB) have been studied on different silver sols. For Raman and SERS wavenumbers, very large changes are observed. Observed variations in the modes of ring may be due to surface π-electron interactions and presence of this indicated that poly substituted ring is more inclined than para substituted phenyl ring and assumes a inclined position for concentration 10-3 M. Changes in orientation are seen in SERS spectra depending on concentration. In order to find electron-rich and poor sites of AUHB, molecular electrostatic potential was also constructed. The molecular docking results show that binding affinity and interactions with the receptor DprE1 may be supporting evidence for further studies in design further AUHB pharmaceutical applications. Based on antitubercular activity of 4-aminosalicylic acid (PAS) and urea derivatives we designed, synthesized and investigated mutual PAS-urea derivatives as potential antimycobacterial agents.
Here's my website:
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.